Fuzzy Granulation-Based Cascade Fuzzy Neural Networks Optimized by GA-RSL

نویسندگان

  • Chang-Wook Han
  • Jung-Il Park
چکیده

This paper is concerned with cascade fuzzy neural networks and its optimization. These networks come with sound and transparent logic characteristics by being developed with the aid of AND and OR fuzzy neurons and subsequently logic processors (LPs). We discuss main functional properties of the model and relate them to its form of cascade type of systems formed as a stack of LPs. The structure of the network that deals with a selection of a subset of input variables and their distribution across the individual LPs is optimized with the use of genetic algorithms (GA). We discuss random signal-based learning (RSL), a local search technique, aimed at further refinement of the connections of the neurons (GA-RSL). We elaborate on the interpretation aspects of the network and show how this leads to a Boolean or multi-valued logic description of the experimental data. Two kinds of standard data sets are discussed with respect to the performance of the constructed networks and their interpretability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

A New Prediction Model for Transformer Winding Hotspot Temperature Fluctuation Based on Fuzzy Information Granulation and an Optimized Wavelet Neural Network

Winding hotspot temperature is the key factor affecting the load capacity and service life of transformers. For the early detection of transformer winding hotspot temperature anomalies, a new prediction model for the hotspot temperature fluctuation range based on fuzzy information granulation (FIG) and the chaotic particle swarm optimized wavelet neural network (CPSO-WNN) is proposed in this pa...

متن کامل

A Design of Dynamically Simultaneous Search GA-based Fuzzy Neural Networks: Comparative Analysis and Interpretation

In this paper, we introduce advanced architectures of genetically-oriented Fuzzy Neural Networks (FNNs) based on fuzzy set and fuzzy relation and discuss a comprehensive design methodology. The proposed FNNs are based on ‘if-then’ rule-based networks with the extended structure of the premise and the consequence parts of the fuzzy rules. We consider two types of the FNNs topologies, called here...

متن کامل

Mixture Odor Classification using Fuzzy Neural Network and Its Optimization through Genetic Algorithm

This report presents an optimized fuzzy neural network through the use of genetic algorithms. Fuzzy neural networks are widely used as it can adaptively deal with measurement of error directly, however, this neural model creates a dilemma from the fact that both large and small networks exhibit a number of disadvantages. If the network size is too small, the error rate tends to increase due to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006